AirSeal® iFS

Clinical Insufflation System

患者の術中・術後成績にプラスの影響を与える、大胆で革新的なソリューションです。臨床データに裏付けされた気腹システムであるAirSealは、腹腔内圧を低くして手術を行うことで、患者の身体への負担を軽減します1-40, ‡

臨床的に裏付けられた結果

AirSealの良好な患者転帰を証明する40の査読付き論文において、7つの外科専門分野にまたがる合計11,352人の患者が登録された。1-40

AirSealは、以下のような全体的かつ臨床的に重要な術後合併症の発生率を減少させる:

hexagon icon
皮下気腫 4,7,18
hexagon icon
術後イレウス発生率 19,20

臨床試験では、AirSealによる低圧アプローチが標準的な気腹法と比較して、以下の削減などの利点があると実証された:

hexagon icon
術後疼痛 1,10,12-17
hexagon icon
CO2終末濃度 1-10
hexagon icon
平均動脈圧(MAP) 2,10
hexagon icon
最高気道内圧 1,4,6,9,10-12
hexagon icon
潮容積 7,12

革新的なケア

独自のアクセスポートは、最も安定した気腹膜を可能にするため、応答性の高い物理学に基づいたガスバリアを形成します。このような技術革新への献身が、あらゆる手技において比類のない圧力の精度と安定性を提供することを保証しています。

​ ​

Airsealは、世界82カ国、5,857施設において、約800万件の手術に使用されています。

常に先を見据えて

私たちは、差別化された気腹により腹腔鏡下手術の基盤を革新することで、患者さんの転帰を改善することを使命としています。この「なぜ」に対する私たちのコミットメントは、独自のカニューレ設計により、安定した気腹によって可能になる比類のない圧力精度を提供する原動力となっています。

私たちは、単に製品を提供するだけでなく、すべての患者のケアの質と手術結果を向上させるという約束を提供します。

外科医と周術期チームにとってのメリット外科医と周術期チームにとってのメリット

AirSealは、安定した気腹と継続的な排煙により途切れることのない視界とクリアな術野を提供し、リークや積極的な吸引の際にも露出を維持するため、低圧での効率的な手術を可能にします。

回復に革命を起こす

AIRSEALを術中に低圧で使用した場合、20の研究で3,000人近いAIRSELA使用患者がPACUでの術後疼痛の軽減を経験しています。

低圧気腹が可能にする回復の促進は、背景や状況に関係なく、すべての患者に提供されるべきです。低圧でのAirSealはERASプロトコールに積極的に貢献することが査読済みデータで証明されている。12

Learn More about Enhanced Recovery After Surgery

より良い結果=より低いコスト

AirSealを用いた低圧での手術は、医療コスト削減につながる可能性があります。AirSealは、患者のPACU滞在時間10と入院期間9,12-16,20-24を短縮することが分かっています。AirSealは以下の項目を低減することで大幅なコスト削減効果をもたらすことが分かっています:

hexagon icon
30日間のER受診と再入院 15
hexagon icon
手術時間 18,23,25-28
50%
在院日数の短縮 †,1,10,12-17
33%
PACU時間の短縮 †,1,10,12,17

Video Gallery

関連資料および製品仕様

Capital Unit

AirSeal iFS1 120V

CAT # AS-IFS1
Voltage 120V

Accessories

iFS Connector for House (Central) Gas, Must be installed on the iFS DISS Fitting

CAT # IFS-WC1
Note USA/Domestic Use Only

iFS Connector for House (Central) Gas, Must be installed on the iFS NIST Fitting

CAT # IFS-WC2
Note International Use Only

iFS Connector for Bottle Gas, Must be installed on the iFS (37° flare fitting)

CAT # IFS-BC1
Note Required Connector for Bottled Gas Use
Note USA and International Use

AirSeal Cart for iFS, USA/Domestic Use

AS-ICART AS-ICART
Note Cart with Bottle Rack, Holds Two “E” Size C02 Tanks

AirSeal® Cart for iFS with Switching Valve, USA/Domestic Use

CAT # AS-ICART-V
Note Holds Two Two “E” Size C02 Tanks, and Switching Valve

Access Ports

5mm Access Port and Low Profile Obturator with Bladeless Optical Tip

CAT # IAS5-100LP
Length 100mm
Qty 6/Box

5mm Access Port and Low Profile Obturator with Bladeless Optical Tip

CAT # IAS5-120LP
Length 120mm
Qty 6/Box

5mm Smooth Access Port and Obturator with Blunt Tip

CAT # IASB5-150
Length 150mm
Note (for use with single site surgical platforms)
Qty 6/Box

8mm Access Port and Low Profile Obturator with Bladeless Optical Tip

CAT # IAS8-100LP
Length 100mm
Qty 6/Box

8mm Access Port and Low Profile Obturator with Bladeless Optical Tip

CAT # IAS8-120LP
Length 120mm
Qty 6/Box

12mm Access Port and Obturator with Blunt Tip

CAT # IASB12-100
Length 100mm
Qty 6/Box

12mm Access Port and Obturator with Blunt Tip

CAT # IASB12-120
Length 120mm
Qty 6/Box

12mm Access Port and Obturator (Bladeless Optical Tip, 150mm Length)

CAT# IAS12-150
Length 150mm
Qty 6/Box

12mm Access Port and Palm Grip Obturator with Bladeless Optical Tip

CAT # IAS12-100LPI
Length 100mm
Qty 6/Box

12mm Access Port and Palm Grip Obturator with Bladeless Optical Tip

CAT # IAS12-120LPI
Length 120mm
Qty 6/Box

Filtered Tubing Sets

Tri-Lumen Filtered Tube Set for use with AirSeal® iFS

CAT # ASM-EVAC1
Qty 6/box

AirSeal® Bifurcated Filtered Tube Set with Activated Charcoal Filter

CAT # ASM-EVAC1-BI
Purchasing Unit of Measure 6/Box

カスタマーサービス

 

 

* Based on internal sales data.
Savings based on 2022 National Average of Kaiser Foundation Costs of Care in for-profit hospitals.
Based on a 2025 market analysis

1 Saway JP, McCaul M, Mulekar MS, McMahon DP, Richards WO. Review of Outcomes of Low Verses Standard Pressure Pneumoperitoneum in Laparoscopic Surgery. Am Surg. 2022;88(8):1832-1837. doi:10.1177/00031348221084956
2 Abaza R, Ferroni MC. Randomized Trial of Ultralow vs Standard Pneumoperitoneum during Robotic Prostatectomy. J Urol. 2022;208(3):626-632. doi:10.1097/JU.0000000000002729
3 Covotta M, Claroni C, Torregiani G, et al. A Prospective, Randomized, Clinical Trial on the Effects of a Valveless Trocar on Respiratory Mechanics During Robotic Radical Cystectomy: A Pilot Study. Anesth Analg. 2017;124(6):1794-1801. doi:10.1213/ANE.0000000000002027.
4 Desroches B, Porter J, Bhayani S, Figenshau R, Liu PY, Stifelman M. Comparison of the Safety and Efficacy of Valveless and Standard Insufflation During Robotic Partial Nephrectomy: A Prospective, Randomized, Multi-institutional Trial. Urology. 2021;153:185-191. doi:10.1016/j.urology.2021.01.047
5 Bucur P, Hofmann M, Menhadji A, et al. Comparison of Pneumoperitoneum Stability Between a Valveless Trocar System and Conventional Insufflation: A Prospective Randomized Trial. Urology. 2016;94:274-280. doi:10.1016/j.urology.2016.04.022
6 Razdan S, Ucpinar B, Okhawere KE, Badani KK. The Role of AirSeal in Robotic Urologic Surgery: A Systematic Review. J Laparoendosc Adv Surg Tech. 2023;33(1). doi:10.1089/lap.2022.0153
7 Wei M, Yang W, Zhou J, et al. Comparison of AirSeal versus conventional insufflation system for retroperitoneal robot-assisted laparoscopic partial nephrectomy: a randomized controlled trial. World J Urol. 2024;42(1):90. Published 2024 Feb 21. doi:10.1007/s00345-024-04819-3
8 Faizan M, Shariq K, Abbas FS, Murtaza DA, Naveed A, Tarar HM, Fahim R, Kumar S, Siddiqui SA. A comparison of CO2-related complications in partial nephrectomies between the AirSeal system and conventional system: a systematic review and meta-analysis. J Robot Surg. 2025;19:104. doi:10.1007/s11701-025-02227-2
9 Sroussi J, Elies A, Rigouzzo A, et al. Low pressure gynecological laparoscopy (7mmHg) with AirSeal® System versus a standard insufflation (15mmHg): A pilot study in 60 patients. J Gynecol Obstet Hum Reprod. 2017;46(2):155-158. doi:10.1016/j.jogoh.2016.09.003
10 Buda A, Di Martino G, Borghese M, et al. Low-Pressure Laparoscopy Using the AirSeal System versus Standard Insufflation in Early-Stage Endometrial Cancer: A Multicenter, Retrospective Study (ARIEL Study). Healthcare (Basel). 2022;10(3):531. Published 2022 Mar 14. doi:10.3390/healthcare10030531
11 Hamid, M., Zaman, S., Mostafa, O.E.S. et al. Low vs. conventional intra-abdominal pressure in laparoscopic colorectal surgery: a prospective cohort study. Langenbecks Arch Surg 410, 12 (2024). https://doi.org/10.1007/s00423-024-03579-3
12 Foley CE, Ryan E, Huang JQ. Less is more: clinical impact of decreasing pneumoperitoneum pressures during robotic surgery. J Robot Surg. 2021;15(2):299-307. doi:10.1007/s11701-020-01104-4
13 Abaza R, Martinez O, Ferroni MC, Bsatee A, Gerhard RS. Same Day Discharge after Robotic Radical Prostatectomy. J Urol. 2019;202(5):959-963. doi:10.1097/JU.0000000000000353
14 Celarier S, Monziols S, Célérier B, et al. Low-pressure versus standard pressure laparoscopic colorectal surgery (PAROS trial): a phase III randomized controlled trial. Br J Surg. 2021;108(8):998-1005. doi:10.1093/bjs/znab069
15 Ferroni MC, Abaza R. Feasibility of robot-assisted prostatectomy performed at ultra-low pneumoperitoneum pressure of 6 mmHg and comparison of clinical outcomes vs standard pressure of 15 mmHg. BJU Int. 2019;124(2):308-313. doi:10.1111/bju.14682
16 Ramshaw B, Forman B, Heidel E, Dean J, Gamenthaler A, Fabian M. A Clinical Quality Improvement (CQI) Project to Improve Pain After Laparoscopic Ventral Hernia Repair. Surg Technol Int. 2016;29:125-130.
17 Ramshaw B, Vetrano V, Jagadish M, Forman B, Heidel E, Mancini M. Laparoscopic approach for the treatment of chronic groin pain after inguinal hernia repair : Laparoscopic approach for inguinodynia. Surg Endosc. 2017;31(12):5267-5274. doi:10.1007/s00464-017-5600-3
18 Feng TS, Heulitt G, Islam A, Porter JR. Comparison of valve-less and standard insufflation on pneumoperitoneum-related complications in robotic partial nephrectomy: a prospective randomized trial. J Robot Surg. 2021;15(3):381-388. doi:10.1007/s11701-020- 01117-z 2.
19 Grieco, M., Tirelli, F., Agnes, A., Santocchi, P., Biondi, A., & Persiani, R. (2021). High-pressure CO2 insufflation is a risk factor for postoperative ileus in patients undergoing TaTME. Updates in surgery, 73(6), 2181–2187. https://doi.org/10.1007/s13304-021-01043-1
20 Rohloff M, Cicic A, Christensen C, Maatman TK, Lindberg J, Maatman TJ. Reduction in postoperative ileus rates utilizing lower pressure pneumoperitoneum in robotic-assisted radical prostatectomy. J Robot Surg. 2019;13(5):671-674. doi:10.1007/s11701-018-00915-w
21 Kikhia, R. M., Price, K., Alli, V., Pryor, A., Gracia, G., Rubano, J., Schnur, J., & Telem, D. (2017). Prospective evaluation of low insufflation pressure cholecystectomy using an insufflation management system versus standard CO2 pneumoperitoneum. SAGES Annual Meeting Abstracts Archive.
22 Ayoub CH, Armache AK, El-Asmar JM, et al. The impact of AirSeal® on complications and pain management during robotic-assisted radical prostatectomy: a single-tertiary center study. World J Urol. 2023;41(10):2685-2692. doi:10.1007/s00345-023-04573-y
23 Zhi W, Wang Y, Wang L, Yang L. Comparative assessment of safety and efficacy between the AirSeal system and conventional insufflation system in robot-assisted laparoscopic radical prostatectomy: a systematic review and meta-analysis. J Robot Surg. 2024;18(1):291. Published 2024 Jul 23. doi:10.1007/s11701-024-02000-x
24 Vasdev N, Martin N, Hackney AB, Piedad J, Hampson A, Shan G-M, et al. Comparing different pneumoperitoneum (12 vs. 15 mmHg) pressures with cytokine analysis to evaluate clinical outcomes in patients undergoing robotic-assisted laparoscopic radical cystectomy and intracorporeal robotic urinary diversion. BJUI Compass. 2023; 4(5): 575–583. https://doi.org/10.1002/bco2.240
25 George, A. K., Wimhofer, R., Viola, K. V., Pernegger, M., Costamoling, W., Kavoussi, L. R., & Loidl, W. (2015). Utilization of a novel valveless trocar system during robotic-assisted laparoscopic prostatectomy. World journal of urology, 33(11), 1695–1699. https://doi.org/10.1007/s00345-015-1521-8
26 Fan, G., Chen, Y., Wang, J., Wu, Y., Wang, Y., Hu, K., & Tang, T. (2024). Perioperative outcomes and safety of valveless insufflation system in minimally invasive urological surgery: A systematic review and meta-analysis. Journal of Robotic Surgery, 18, Article 269. https://doi.org/10.1007/s11701-024-02023-4[1]
27 Yezdani, M., Yu, S.-J., Lee, A., Taylor, B., McGill, A., Monahan, K., & Lee, D. (2016). MP23-17 IMPROVED OUTCOMES DURING ROBOTIC PROSTATECTOMY UTILIZING AIRSEAL TECHNOLOGY. Journal of Urology, 195(4S), e268. https://doi.org/10.1016/j.juro.2016.02.739 (Original work published April 1, 2016)
28 Rydlewicz, J. A., Suzo, A. J., Mikami, D. J., & Needleman, B. J. (2025). Retrospective study of the AirSeal™ system for laparoscopic bariatric surgery. Journal of Minimally Invasive Surgery, 32(2), 123-130. The Ohio State University Wexner Medical Center. https://doi.org/10.1007/s00464-025-01234-5[1]
29 Annino, F., Topazio, L., Autieri, D., Verdacchi, T., De Angelis, M., & Asimakopoulos, A. D. (2017). Robotic partial nephrectomy performed with Airseal versus a standard CO2 pressure pneumoperitoneum insufflator: a prospective comparative study. Surgical endoscopy, 31(4), 1583–1590. https://doi.org/10.1007/s00464-016-5144-y
30 Boualaoui, I., Bey, E., De Villeneuve, M. H., Dergamoun, H., Droupy, S., & Wagner, L. Medico-Economic Impact of the AirSeal® Insufflator: Example of Laparoscopic Sacrocolpopexy. Clin Surg. 2021; 6, 3084.
31 Dabi, Y., Ouasti, S., Didelot, H., Wohrer, H., Skalli, D., Miailhe, G., Uzan, J., Ferrier, C., Bendifallah, S., Haddad, B., Daraï, E., & Touboul, C. (2022). Total Hysterectomy by Low-Impact Laparoscopy to Decrease Opioids Consumption: A Prospective Cohort Study. Journal of clinical medicine, 11(8), 2165. https://doi.org/10.3390/jcm11082165
32 de'Angelis, N., Abdalla, S., Carra, M. C., Lizzi, V., Martínez-Pérez, A., Habibi, A., Bartolucci, P., Galactéros, F., Laurent, A., & Brunetti, F. (2018). Low-impact laparoscopic cholecystectomy is associated with decreased postoperative morbidity in patients with sickle cell disease. Surgical endoscopy, 32(5), 2300–2311. https://doi.org/10.1007/s00464-017-5925-y
33 Forte, F., Tripodi, D., Pironi, D., Corongiu, E., Gagliardi, F., Frisenda, M., Gallo, G., Quarantiello, A., Di Lorenzo, G., Cavaleri, Y., Salciccia, S., Lori, E., & Sorrenti, S. (2023). Comparison of laparoscopic partial nephrectomy performed with AirSeal® system vs. standard insufflator: results from a referral center. Frontiers in surgery, 10, 1220332. https://doi.org/10.3389/fsurg.2023.1220332
34 Horstmann, M., Horton, K., Kurz, M., Padevit, C., & John, H. (2013). Prospective comparison between the AirSeal® System valve-less Trocar and a standard Versaport™ Plus V2 Trocar in robotic-assisted radical prostatectomy. Journal of endourology, 27(5), 579–582. https://doi.org/10.1089/end.2012.0632
35 Katoh, H., Ikeda, Y., Saito, Y. et al. The Usefulness of AirSeal™ Intelligent Flow System in Gas Insufflation Total Endoscopic Thyroidectomy. Indian J Otolaryngol Head Neck Surg 75, 115–120 (2023). https://doi.org/10.1007/s12070-022-03257-0
36 La Falce, S., Novara, G., Gandaglia, G., Umari, P., De Naeyer, G., D'Hondt, F., Beresian, J., Carette, R., Penicka, M., Mo, Y., Vandenbroucke, G., & Mottrie, A. (2017). Low Pressure Robot-assisted Radical Prostatectomy With the AirSeal System at OLV Hospital: Results From a Prospective Study. Clinical genitourinary cancer, 15(6), e1029–e1037. https://doi.org/10.1016/j.clgc.2017.05.027
37 Lu, Y., Zou, Q., Jiang, B., & Li, Q. (2024). Perioperative outcomes and safety of valveless insufflation system in minimally invasive urological surgery: a systematic review and meta-analysis. International journal of surgery (London, England), 110(9), 5763–5770. https://doi.org/10.1097/JS9.0000000000001634
38 Miyano, G., Morita, K., Kaneshiro, M., Miyake, H., Nouso, H., Yamoto, M., Koyama, M., Nakano, R., Tanaka, Y., Fukumoto, K., & Urushihara, N. (2015). Laparoscopic Toupet Fundoplication using an Air Seal Intelligent Flow System and Anchor Port in a 1.8-kg infant: A Technical Report. Asian journal of endoscopic surgery, 8(3), 357–360. https://doi.org/10.1111/ases.12182
39 Paull, J. O., Parsacandola, S. A., Graham, A., Hota, S., Pudalov, N., & Obias, V. (2021). The impact of the AirSeal® valve-less trocar system in robotic colorectal surgery: a single-surgeon retrospective review. Journal of robotic surgery, 15(1), 87–92. https://doi.org/10.1007/s11701-020-01071-w
40 Shahait, M., Cockrell, R., Yezdani, M., Yu, S. J., Lee, A., McWilliams, K., & Lee, D. I. (2019). Improved Outcomes Utilizing a Valveless-Trocar System during Robot-assisted Radical Prostatectomy (RARP). JSLS : Journal of the Society of Laparoendoscopic Surgeons, 23(1), e2018.00085. https://doi.org/10.4293/JSLS.2018.00085