3 Tips to Unlock Value at Your ASC or Endocenter In Today’s Evolving Landscape
- Published: 4/3/2023
- 5 min
- Updated: 11/24/2025
Multispecialty Doesn’t Mean Multiple Stressors – Especially with Higher-Acuity Cases
CMS continues to expand the ASC-approved procedure list, now including more complex surgeries like cardiovascular, spine, and total joint replacements. This shift toward higher-acuity cases requires operational upgrades such as:
- Larger ORs to accommodate advanced procedures.
- Advanced imaging and robotics to support precision and efficiency.
- Data-driven technology like AirSeal®, which helps maintain stable pneumoperitoneum and clear visualization during complex MIS procedures.
- Orthopedic Hall® Power tools, offering backward/forward compatibility and a wide variety of blade/tip options — allowing expansion without full reinvestment.
Partnering with a vendor that offers a comprehensive portfolio—powered instruments, video, electrosurgery, smoke evacuation, and disposables—can streamline operations and reduce costs. One point of contact means better service, fewer headaches, and bundling opportunities that drive additional savings.
Plan for Future Recruitment Now
As ASC growth continues, staffing becomes critical. Recruiting experienced physicians and OR managers can help:
- Increase procedural efficiency.
- Attract patient volume.
- Enhance your center’s reputation.
- Improve room turnover and scheduling flexibility.
Look for staff with multispecialty experience to maximize operational agility. Incorporating the latest data-driven technology can help encourage experienced healthcare staff to join your practice and take advantage of the patient/procedural benefits that these technologies can offer.
In the event of staff turnover, products with streamlined learning experience can also help better prepare the new employees in a shorter amount of time.
Partner for Clinical and Financial Excellence in a Value-Based World
ASCs are increasingly participating in value-based reimbursement models and bundled payment arrangements. To thrive in this environment:
- Track outcomes rigorously rigorously — clinical data from technologies like AirSeal® can support improved patient outcomes through reduced length of stay,12-16,20-24, decreased PACU recovery time10, and lower postoperative pain1,10,12-17 when used at low pressure. Seek solutions with lower total cost of ownership, such as Orthopedic Hall® Power tools.
-
Partner with suppliers like CONMED who offer:
- Reward/rebate programs for additional cost savings.
- Data-driven collaboration to help you meet quality and financial goals.
- Medical education, Continuing Education courses, and hands-on training to elevate clinical excellence.
ASCs and Endocenters are no longer just alternatives—they’re becoming the preferred setting for a growing range of procedures. By embracing innovation, planning strategically, and partnering wisely, your center can unlock new levels of value and position itself for long-term success.
Connect with your local CONMED sales representative to learn how we can help better equip your facility.
* Based on Current Market Data
1 Saway JP, McCaul M, Mulekar MS, McMahon DP, Richards WO. Review of Outcomes of Low Verses Standard Pressure Pneumoperitoneum in Laparoscopic Surgery. Am Surg. 2022;88(8):1832-1837. doi:10.1177/00031348221084956
2 Abaza R, Ferroni MC. Randomized Trial of Ultralow vs Standard Pneumoperitoneum during Robotic Prostatectomy. J Urol. 2022;208(3):626-632. doi:10.1097/JU.0000000000002729
3 Covotta M, Claroni C, Torregiani G, et al. A Prospective, Randomized, Clinical Trial on the Effects of a Valveless Trocar on Respiratory Mechanics During Robotic Radical Cystectomy: A Pilot Study. Anesth Analg. 2017;124(6):1794-1801. doi:10.1213/ANE.0000000000002027.
4 Desroches B, Porter J, Bhayani S, Figenshau R, Liu PY, Stifelman M. Comparison of the Safety and Efficacy of Valveless and Standard Insufflation During Robotic Partial Nephrectomy: A Prospective, Randomized, Multi-institutional Trial. Urology. 2021;153:185-191. doi:10.1016/j.urology.2021.01.047
5 Bucur P, Hofmann M, Menhadji A, et al. Comparison of Pneumoperitoneum Stability Between a Valveless Trocar System and Conventional Insufflation: A Prospective Randomized Trial. Urology. 2016;94:274-280. doi:10.1016/j.urology.2016.04.022
6 Razdan S, Ucpinar B, Okhawere KE, Badani KK. The Role of AirSeal in Robotic Urologic Surgery: A Systematic Review. J Laparoendosc Adv Surg Tech. 2023;33(1). doi:10.1089/lap.2022.0153
7 Wei M, Yang W, Zhou J, et al. Comparison of AirSeal versus conventional insufflation system for retroperitoneal robot-assisted laparoscopic partial nephrectomy: a randomized controlled trial. World J Urol. 2024;42(1):90. Published 2024 Feb 21. doi:10.1007/s00345-024-04819-3
8 Faizan M, Shariq K, Abbas FS, Murtaza DA, Naveed A, Tarar HM, Fahim R, Kumar S, Siddiqui SA. A comparison of CO2-related complications in partial nephrectomies between the AirSeal system and conventional system: a systematic review and meta-analysis. J Robot Surg. 2025;19:104. doi:10.1007/s11701-025-02227-2
9 Sroussi J, Elies A, Rigouzzo A, et al. Low pressure gynecological laparoscopy (7mmHg) with AirSeal® System versus a standard insufflation (15mmHg): A pilot study in 60 patients. J Gynecol Obstet Hum Reprod. 2017;46(2):155-158. doi:10.1016/j.jogoh.2016.09.003
10 Buda A, Di Martino G, Borghese M, et al. Low-Pressure Laparoscopy Using the AirSeal System versus Standard Insufflation in Early-Stage Endometrial Cancer: A Multicenter, Retrospective Study (ARIEL Study). Healthcare (Basel). 2022;10(3):531. Published 2022 Mar 14. doi:10.3390/healthcare10030531
11 Hamid, M., Zaman, S., Mostafa, O.E.S. et al. Low vs. conventional intra-abdominal pressure in laparoscopic colorectal surgery: a prospective cohort study. Langenbecks Arch Surg 410, 12 (2024). https://doi.org/10.1007/s00423-024-03579-3
12 Foley CE, Ryan E, Huang JQ. Less is more: clinical impact of decreasing pneumoperitoneum pressures during robotic surgery. J Robot Surg. 2021;15(2):299-307. doi:10.1007/s11701-020-01104-4
13 Abaza R, Martinez O, Ferroni MC, Bsatee A, Gerhard RS. Same Day Discharge after Robotic Radical Prostatectomy. J Urol. 2019;202(5):959-963. doi:10.1097/JU.0000000000000353
14 Celarier S, Monziols S, Célérier B, et al. Low-pressure versus standard pressure laparoscopic colorectal surgery (PAROS trial): a phase III randomized controlled trial. Br J Surg. 2021;108(8):998-1005. doi:10.1093/bjs/znab069
15 Ferroni MC, Abaza R. Feasibility of robot-assisted prostatectomy performed at ultra-low pneumoperitoneum pressure of 6 mmHg and comparison of clinical outcomes vs standard pressure of 15 mmHg. BJU Int. 2019;124(2):308-313. doi:10.1111/bju.14682
16 Ramshaw B, Forman B, Heidel E, Dean J, Gamenthaler A, Fabian M. A Clinical Quality Improvement (CQI) Project to Improve Pain After Laparoscopic Ventral Hernia Repair. Surg Technol Int. 2016;29:125-130.
17 Ramshaw B, Vetrano V, Jagadish M, Forman B, Heidel E, Mancini M. Laparoscopic approach for the treatment of chronic groin pain after inguinal hernia repair : Laparoscopic approach for inguinodynia. Surg Endosc. 2017;31(12):5267-5274. doi:10.1007/s00464-017-5600-3
18 Feng TS, Heulitt G, Islam A, Porter JR. Comparison of valve-less and standard insufflation on pneumoperitoneum-related complications in robotic partial nephrectomy: a prospective randomized trial. J Robot Surg. 2021;15(3):381-388. doi:10.1007/s11701-020- 01117-z 2.
19 Grieco, M., Tirelli, F., Agnes, A., Santocchi, P., Biondi, A., & Persiani, R. (2021). High-pressure CO2 insufflation is a risk factor for postoperative ileus in patients undergoing TaTME. Updates in surgery, 73(6), 2181–2187.